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Available online 22 March 2013 Post-seismic inventory and logistics planning under incomplete and fuzzy information is an important
yet understudied area in supply chain risk management. The goal of this paper is to propose a system
dynamics model to analyze the behaviors of disrupted disaster relief supply chain by simulating
the uncertainties associated with predicting post-seismic road network and delayed information.
The simulation results indicate: (1) information delay has different influences over the relief head-
quarter (the upstream) and the disaster-affected areas (the downstream); and (2) the change of road
conditions and shipment schedules have impact on the on-time transportation rate in supply chain
management. Furthermore, this paper defined and tested supplies' replenishment solutions combined
with three inventory planning strategies and four forecasting methods under different lead time
uncertainties. The results show that: (1) a strategy that considers information from both the post-
seismic management center and the affected areas can provide a better logistic plan than an one takes
information from one side; (2) the smooth-the-trend forecasting method is suitable for inventory and
logistic planning when the post-seismic situations are volatile, while the quick-response forecasting
method has good performance in stable environments. In addition, this paper proposes decision tree to
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help decision makers choose the appropriate stocking strategies.
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1. Introduction

With the frequent occurrence of disasters and incidents in
recent years, there has been an increase in the interest of the
international academic community in the challenges of the huma-
nitarian supply chain [1]. Whybark et al. [2] reviewed scholarly
journal articles after the January 2010 Haiti earthquake, and
suggested that the disaster relief supply chain is a subset of the
humanitarian supply chain because its operating environment is
extremely uncertain and dynamic. Beamon [3] made a detailed
comparison list between disaster relief operations and normal
commercial activities, including demand pattern, lead times,
distribution network, inventory control, information system,
and strategic goals. Consequently, practices that may work well
in commercial settings may not be appropriate in disasters
responses [2].

Road conditions varied under different geological conditions.
After the 2008 Wenchuan earthquake, some roads were damaged
or even disrupted for a long period. Some roads were quickly
repaired and were destroyed again by aftershocks and secondary
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disasters, while some others maintained a fluctuating transpor-
tation capacity. The transport time of supplies varied in this
circumstances. In addition, information regarding demand and
material inventories was often delayed and disrupted by dynamic
information delay (ID), and was even completely unavailable in
some circumstances. Such wide-ranging uncertainties present
significant challenges to make the replenishment decisions. How-
ever, comparing with the studies on demand forecasting, there has
been less studies in the dynamic lead times prediction.

System dynamics (SD) is a popular approach to study such
problems for its ability to deal with high levels of uncertainty,
causal ambiguity, and complexity. In this paper, we implement
an SD model to describe the disaster relief supply chain with
dynamic road conditions and ID by combining existing researches
on transportation, supply chains, and seismic risk assessment.
To evaluate the impact of the environmental factors and the effect
of the response decisions, the replenishment solutions are com-
bined with three inventory planning strategies and four forecast-
ing methods, and different scenarios which match solutions with
the dynamic circumstances were also suggested. After the analysis
of the simulation results, a decision tree is proposed to assist
the decision-makers to choose the stocking strategies based on
quantified risks after a disaster strikes.

The rest of this paper is organized as follows: Section 2 reviews
the related works in supply chain risk management and system
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dynamics disruption analysis. Section 3 defines the research
problem and describes the proposed system dynamics model.
Section 4 represents the simulation results and discusses how
the inventory and logistics planning decision should be made.
Section 5 summarizes the paper with conclusions and future
research directions.

2. Literature review

Since Lee et al. [4] indentified the bullwhip effect and its causes,
lots of studies have been conducted on demand forecasting, informa-
tion sharing, and coordination among supply chain members. Factors
such as variable lead times and/or delayed information transfers are
also included in such studies. However, in commercial supply chain
research, researchers usually focus on just one of these factors to
assure a stable environment in term of lead times. For example,
He et al. [5] assumed lead time to be stochastic and measurable;
Handfield et al. [6] described lead times as a fuzzy set; and Song and
Zipkin [7] compared the performances of a multiple source supply
system with different types of lead times that were constant,
stochastic, and exogenous. Only a few studies have considered the
delay of lead times. For example, Bensoussan et al. [8] studied the ID
of an inventory system caused by the instability or failure of a data
management system, and they used several stochastic ID and one
constant transport delay.

Researchers also made similar assumptions in humanitarian
logistic and disaster relief supply chains research. In resource
scheduling models in emergency situations, the transport delay is
usually set as a fixed value [9,10]. However, in the real-life dynamic
situations in disaster areas, according to Ozdamar et al. [11],
actual vehicle numbers is more accurate in representing the limita-
tions of transport capacity.

SD models were introduced to describe and analyze the
behavior of the supply chain, with different types of delay. Barlas
and Gunduz [12] defined three typical ordering policies in an SD
model to investigate the structural sources of the bullwhip effect,
and explored the effectiveness of information sharing to eliminate
undesirable fluctuations. Ge et al. [13] presented an SD model to
analyze the bullwhip effect in the supply chain of a supermarket.
They compared the system performances of eight scenarios based
on different assumptions of ID, demand forecasting, and informa-
tion sharing. Rubiano and Crespo [14] evaluated the impact of
using Internet-based e-collaboration tools in supply chain man-
agement. They built an SD model that consisted of four trade
partners, and the four types of collaborative approaches among
them were compared. In the researches above, unique lead times
in material transportation and delay times in order transfer are
assumed to be constant for each supply chain member.

SD models have been used to simulate a wide range of
disasters, such as road rush-repairs after an earthquake [15,29],
coal mine accidents [16,17], and floods [18,19]. For an example,
Besiou et al. [20] discussed the advantages of studying disaster
relief issues using SD methodology, and took an example of field
vehicle fleet management to show how SD captures complexity.
However, less studies have been done on selection of inventory
planning strategies and forecasting methods in emergency supply
chain management. In this research, we will discuss how the
replenishment process of emergency supplies could be impacted
by the dynamic environmental factors comparing with the tradi-
tional supply chain model.

3. Analysis of the problem and the system dynamics model

Suppose there exists a post-seismic area shown in Fig. 1. The
shaded part at the left represents mountain area, and the
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Fig. 1. Environment of post-seismic relief.

remaining white area represents plain area. The epicenter is
located in the mountain area with several disaster-affected towns
surrounding it. During a disaster relief operation, supplies must be
delivered from the relief headquarters (HQ) to those towns. Thus, a
two-stage relief supply chain is established. Unlike the usual
commercial supply chain, material and information flows are
affected by the earthquake and continual aftershocks, which cause
dynamic transport delays and ID. Each town will suffer different
degrees of delays because of their geological conditions and
distance from the epicenter. The environmental assessment and
the decision-making structure are described in this section.

3.1. Environmental factors in post-seismic area

3.1.1. Dynamic road capacity

The factors that affect transport conditions can be described in
a causal loop diagram as shown in Fig. 2. The damage energy
released by the earthquake, measured as peak ground acceleration
(PGA), will decrease over distance. Continuing aftershocks and
secondary disasters like landslides and debris flows increase the
level of damage to the road system. These damage types are
accumulated and included as a state variable Road Damage Stack,
which is reduced by the continual attempts at road repair, and are
converted dynamically into Road Capacity Loss. The Mountain
Factor aggravates the geological hazards, but decreases the effort
of repair. In addition, the greater the Road Capacity Loss, the less
the Effective Repair Ability.

In seismic risk assessment, researchers have developed several
models to determine the performance of transportation network
systems after large-scale disasters. Shinozuka et al. [21] suggested
that bridges are the most vulnerable of all engineered components
under seismic conditions, so the assessment of road networks can
be simplified to the assessment of bridges. They developed
empirical bridge damage fragility curves expressed as log normal
distribution functions of PGA, which were evaluated using the
degradation of the traffic capacities of Los Angeles networks after
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Fig. 2. Causal loop diagram of the dynamic road capacity.
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Fig. 3. Simulation results of dynamic road capacity for the three towns.

the 1994 Northridge earthquake. Shiraki et al. [22] improved these
functions and optimized the method of estimating capacity losses
on entire networks. A later study by Lan et al. [23] corrected some
of the parameters based on data regarding previous earthquakes
in China.

To calculate the seismic energy reaching the towns in our
study, a formula which was verified by Chen Hou-qun et al. [24] is
introduced to determine earthquake intensity transmission in
southwest China using aftershock data from the 2008 Wenchuan
earthquake [25] as input. The sequence of the secondary disasters
was generated using a random function, while the output value
also decreased over the distance from the epicenter.

The simulation results of the dynamic Road Capacity in Disaster
of the three towns mentioned in Fig. 1 are shown in Fig. 3. The unit
of time is half-day. Because of the geologic conditions, the traffic
to town-10M (10 km away from epicenter, mountain area) is
initially completely disrupted, and the road is partially recovered
15 days later. The road to town-30M (30 km away from epicenter,
mountain area) is not destroyed by the first earthquake, but
destroyed later by the continual aftershocks and secondary
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Fig. 4. Typical travel times for the three towns.

disasters. The road capacity of town-30P (30 km away from
epicenter, plain area) is slightly damaged during the earthquake
and soon the road capacity is fully recovered.

3.1.2. Travel time and the dynamic transport delay

Few studies have been done on variations in transportation
times for commercial supply chains because the cargo quantity is
usually significantly less than the capacity of the transport net-
works. However, in disaster-affected areas, road capacity is the
bottleneck in supply chain due to the decrease in transportation
capacity and the sudden increase of relief vehicles [20]. In
transportation science, the most widely used method to estimate
transport times is proposed by the Bureau of Public Roads (USA)
[21,26], which can be represented as

B
T=T, [1+a<%> :|, (1)

where Ty is the travel time with zero vehicle flow on the road,
C is the capacity of the road, and V is the current volume of cargo
on the road. If the two variable parameters are set as «=0.15 and
B=4.0, it means that the travel time on a road at 100% capacity is
15% greater than at a free flow time [21]. This algorithm can
simulate the severe obstruction to traffic, but once the V/C ratio
is greater than 1.2, the estimated travel time will be over-
exaggerated. Bertini et al. [26] revised the formula based on
operating data from U.S. highways, but the estimations are still
too large when V/C > 2. Furthermore, no one have addressed the
situation of roadblocks when C=0. Hence, the above formulas are
not applicable to disaster areas.

In this research, a segment function is developed with V/C ratio
to describe the effect of road conditions on travel time:

Thiocks Cr=0,
Ve
T, = To, o<1, )
To‘c/f, % >1,

where T, is the travel time estimated by decision-makers; Ty is the
road's Normal Transport Time. C, is the current Road Capacity in
Disaster, which indicates the amount of materials that could be
transported per unit of time. V; is the current volumes of supplies
in transit. Tpck is the length of time when the road is blocked
(interrupted travel). In addition, C;=0 means the road is blocked,
Vi/C:<1 represents a road without traffic jam, and V,/C,>1
indicates the existence of traffic jam.

Travel time is influenced by the volumes of supplies in transit
and the Road Capacity in Disaster. The decision-makers at HQ and
in the towns may assume different travel times because the V/C
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ratios they received are not synchronized because of the dynamic
ID. In other words, decision-makers are not aware of the real level
of transport delays in relief supply chains, which is quite different
from that of a commercial supply chain.

The implementation of the proposed SD mechanism is described
in Fig. 7, and the simulation results are shown in Fig. 4, which
assumes that all towns have the same travel time to the HQ in
normal time and Ty=1. Town-10M suffers a high level of transport
delay because of a roadblock. The delay in travel time to town-30M
is because of roadblocks and traffic jams. Town-30P experiences no
delays at all.

3.1.3. Dynamic information delay

In post-disaster areas, information delay (ID) occurs when
there are failures in telecommunication facilities and ID usually
decreases over time. In addition, the received information is often
inaccurate or contradictory because of subjective speculation,
rumors, and unexpected noise. In this research, a delay generator
is proposed to simulate dynamic ID. A negative exponential func-
tion is used to characterize the general trend of gradual decline,
and a random variable is introduced to simulate various noises.

Two levels of Information Delay are simulated by changing the
parameters {Max(of time), Mean(of time), Drop Rate}. The values
are Low ID{1, 1, 5} and High ID{6, 2, 5}. The results are shown
in Fig. 5.

3.2. Decision structure

3.2.1. Inventory planning strategies and information sharing

Inventory planning strategies have been discussed widely
in numerous studies, such as vender-managed inventory (VMI),
information share, and the bullwhip effect. Several models in the
SD approach have also been developed and discussed [12-14].
To test the performance of replenishment solutions in a post-disaster
environment, two basic strategies (Town Order and HQ Managed
Inventory) and an additional strategy (Joint Order) are proposed.

In the first strategy ‘Town Order’, the decision-maker in the
disaster-affected town collects the necessary information and is
responsible for placing replenishment orders (the Town Order).
By the ordering policy as order-up-to-S, an order is sent out to
replenish the inventory level to S when the Town Inventory falls
below a preset stock level. The order equations are as follows:
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¢ 54 60
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Fig. 5. Two levels of information delay.
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where O; is the order, S; is the order-up-to level, I; is the current
Town Inventory, IAT is the adjustment time of inventory,
D is demand, ID; is the current level of Information Delay, T; is
the estimated transport delay, and ¢ is compensation for the
estimation error.

Bottled water is chosen as the supply item in our study.
Compared with other emergency supplies like medicines or tents,
the daily demand for bottled water is stable and independent.
This makes D, a constant. In Eq. (4), (IDt+Tt +e¢&¢) represents
the estimated result of the total lead time. It is obvious that
the method to forecast T; and &, will have significant impact on the
accuracy of the order. The current value of ID, will be used
without any further evaluation as the change in ID; is the same
in all simulation scenarios.

In the second strategy ‘HQ Managed Inventory’, the HQ
decision-maker receives feedback on the Town Inventory and is
responsible for placing replenishment orders (HQ Expect Order).
A order-up-to-S policy will also be implemented for HQ Managed
Inventory, however, almost every variable will be deferred by ID,.
The information flows of this strategy are shown by the dashed
lines in Fig. 6. This decision process is similar to VMI, but the ID
should be smaller under the VMI mode or even eliminated after
the implementation of e-collaboration tools [12,14]. The high level
of ID will lead to lower performance in relief operations. But this
strategy still has its practical meaning because the orders from
affected towns would be seriously delayed or even unavailable in a
disaster area, especially in the early period of relief operations.

Both of the two strategies have obvious defects in post-disaster
environments. The decision-makers in the towns know the exact
quantity of the in-town inventory and the road conditions, but
could not make precise prediction in lead times, and the orders
will be delayed by the ID. The decision-makers at the HQ can make
precise prediction in lead times but they do not have informa-
tion in town inventory and road conditions when they make the
prediction.

Thus, a third strategy, ‘Joint Order’ is proposed. Both the Town
Order and the HQ Expect Order are submitted and the final quantity
of the Replenishment Decision is the mean of the two values. This
joint strategy will partially offset the impact of the ID, which can
be verified in the following simulations.

The decision structure of different strategies is shown in Fig. 6.

3.2.2. Replenishment solutions and lead time forecasting
The replenishment solution includes two stages of decision-
making: the inventory planning strategy and the forecasting method
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Table 1
Model equations of replenishment solutions.

Inventory planning strategy Forecasting method for transport delay No.

Decision strategy Replenishment quantity HQ method Town method (Te+en)

Town Order Town Order (Ozown) - Directly (Dir) (Tt +KStown) (5)
- Average (Avg) (T +KStown) (6)

HQ Managed Inventory HQ Expect Order (Opq) Directly (Dir) - (T¢+KSho) (7)
Average (Avg) - (Te+KSho) (8)
Safety stock (SS) - (Ti+Zor) 9)
Exponential smoothing (ES) - [aTe+(—a)Tiq +Z6¢) (10)

Joint Order (Otown+Omq)/[2 Average (Avg) Average (Avg) As definitions above (11)

for lead time in transport delays. Different forecasting methods for
lead time in different decision strategy are listed in Table 1.

In Egs. (5) and (7), the prediction of transport delay is not
considered, which is not good in performance but still widely used
in affected areas because of the lack of logistics talents. KS;,,,, and
KSphq are ‘lead time inflation constant’ [12] to set a desired stock
level which is always greater than D,T;, to eliminate uncertainties.
The values of KS represents the expected lead time by the
decision-makers.

The ‘average’ method is better in predicting the fluctuation as it
continuously calculates T, as shown in Egs. (6) and (8). The ‘safety
stock’ method in Eq. (9) is defined by Heizer and Render [27],
where T, is also the average transport time, ¢, is the standard
deviation of the forecasting error of T, and Z is a constant of
standard normal deviations. When a desired service level is set as
95% and 99%, Z should be 1.65 and 2.33, respectively. The
‘exponential smoothing’ method in Eq. (10) balances the response
trends and stabilizes the fluctuation. In the ‘exponential smooth-
ing’ method, « is the smoothing coefficient (Cof), and 6, and Z are
the same as defined previously. However, the ‘safety stock’ or
‘exponential smoothing’ methods are not implementable in the
“Town Order” strategy due to the absence of knowledgeable
decision makers in town.

3.3. Stock and flow diagram

After the analysis of the main environmental factors and the
decision solutions, a SD model is built to simulate the processes of
disaster relief supply. In SD model, we assumed that HQ has
unlimited supply of bottled water inventory and no further orders
are required. Several issues related road capacity need to be
addressed: (a) the amount of HQ Shipped must be lower than
Road Capacity in Disaster; and (b) the volume of in-transit
inventory is divided into two stocks—the Supplies Stranded repre-
sents the cargo that is stranded on the road because of a roadblock
or traffic jam and the Supplies in Transit represents the cargo that
can be delivered and will reach the town after a delay of the
Normal Transport Time. These assumptions are consistent with
Eq. (2) in SD.

Two variables are introduced to measure the performance of
decisions. The Total After HQ Inventory is the sum of Supplies
Stranded, Supplies in Transit, and Town Inventory, which represents
total wasted emergency supplies. The Supply Rate is the value of
Town Consumed divided by Demand, which is a measurement
of the service level.

We also assume that the HQ makes shipment decisions once
per half-day. The unit of simulation time is set as ‘half-day’. Every
simulation runs 60 turns, which simulates the first 30 days of
a post-disaster period. The populations of the three towns are

assumed to equal 10,000 persons per town, and the demand for
bottled water is two bottles/person/half-day. Hence the total
demand is 20,000 bottles per run. The initial Town Inventory is
for 10,000 bottles, for all three towns. The inventory adjustment
time for the HQ is set to 1, so that HQ shipment decisions can
always be executed immediately.

The diagram in Fig. 7 shows the structure of the stocks
and flows.

4. Simulation results and discussion
4.1. Scenario definitions and simulation results

More than 50 scenarios are created to compare the perfor-
mance of various decisions by the cross-combination of the
different environments and replenishment solutions. The defini-
tions and the simulation results of each scenario are listed in
Table 2. Some results such as the scenarios using methods Dir or
ES with Cof=0.6, which has significantly poor performances, have
been filtered out due to space limitation. The filtered results will
be further discussed in Section 4.3.1. (In fact Cof=0.1-0.9 were
all tested, and value 0.1 led to the best service level in all
environments.)

An increase in the lead time will cause oscillations in inventory
levels along the supply chain [12]. A delay in order information
will significantly increase the inventory level [4,12,13]. These
effects are confirmed by our experiments and the experiments
also show that those effects are more complicated in disaster relief
operations.

In a regular commercial supply chain, a higher inventory level
would result in a better supply level when the demand is not fully
met. While in a relief system with large uncertainties, according to
Table 2, a better Supply Rate will not be guaranteed by increasing
the Total After HQ Inventory. Taking the scenarios from 1 to 6 as an
example. From scenario 5 to 6, the increasing in inventory levels
causes a higher supply level. While from scenario 1 to 2, then 3,
the inventory levels are raising but the supply levels remain
unchanged.

Therefore, the correlation between the inventory level and the
supply level can be considered as a phase function with a thresh-
old value. The interrupted road and the traffic jam constitute new
restrictions of the logistics system. The delivered supplies more
than the damaged transport capacity will not reach the affected
towns but just be stranded on the road. Moreover, these restric-
tions are dynamic and reinforced by the high level of ID.
Under this circumstance, the decision-makers should choose the
replenishment strategy carefully to achieve a balance between the
inventory level and the supply level.
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4.2. Analysis of the effect of post-disaster environment

4.2.1. Effect of information delay

ID affect the relief supply chain in three aspects: (1) delays the
submission process of town orders, (2) prevents HQ from making a
timely response to the changing environment because of delays in
feedback, and (3) as an integral part of the lead time, a high level
of ID leads to greater order quantities and higher inventory levels.

A delay in the Town Order causes significant differences in the
simulation results listed in Table 2. All the solutions based on the
strategy Town Order produce a lower Supply Rate than those
solutions based on HQ Managed Inventory using the same
prediction method. It is noted that this strategy is commonly used
in affected areas and it usually results in less waste of supplies
when ID is low.
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ply chain in post-seismic environment.

Fig. 8 compares the shipment sequences under different levels
of ID. The two scenarios use the same solution combined with the
Town Order strategy and forecasting method Dir. The figure shows
that the higher ID actually defers the shipment. Fig. 9 compares
the shipment sequences under different strategies in same envir-
onment with forecasting method Dir. It shows that the order
submitted by HQ is not affected by the high ID while the town's
order is affected.

To the decision-makers in the HQ, ID defers all kinds of
feedback. On the one hand, HQ needs the Feedback Town Inventory
to calculate the correct order quantity. On the other hand,
the Feedback Road Capacity and the Feedback in-Transit Qty are
designed as the threshold to prevent HQ from sending too many
supplies via traffic-logged roads. With high levels of ID, more
cargos will be transported on the road, which leads to heavier
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Table 2
Scenario definitions and simulation results.

ID Environment

Inventory planning strategy Lead time forecasting method

Supply rate Total after HQ Inventory?®

Geologic condition Information delay HQ Param. Town Param. Mean (%) Std.dev. Max Mean Std. dev.
1 10 km Mountain High HQ Managed Inventory Avg KS=1 49.8 0.49 29.09 21.72 7.20
(town-10M)
2 SS Z=1.65 49.8 049 63.16 26.16 17.01
3 SS Z=233 49.8 049 63.16 28.09 1843
4 ES Cof=0.1 49.6 0.49 5034 2634 1221
Z=233
5 Town Order Avg KS=1 463 0.49 5341 1470 17.86
6 Joint Order Avg KS=1 Avg KS=1 498 0.49 3574 1660  7.00
7 Low HQ Managed Inventory Avg KS=1 49.8 0.49 3891 14.66 9.00
8 SS Z=1.65 49.8 0.49 62.68 2327 2217
9 SS Z=233 49.8 0.49 75.71 2754 27.38
10 ES Cof=0.1 44.5 0.48 4251 1037 13.32
Z=2.33
1 Town Order Avg KS=1 465 0.49 3727 1022 1191
12 Joint Order Avg KS=1 Avg KS=1 498 0.49 3743 1234 1030
13 30 km Mountain High HQ Managed Inventory Avg KS=1 80.5 0.34 22.55 10.87 6.00
(town-30M)
14 SS Z=1.65 79.0 0.37 42.63 1819 11.27
15 SS Z=233 79.0 0.37 42.63 2135 1313
16 ES Cof=0.1 77.9 0.38 2542 1287 6.39
Z=2.33
17 Town Order Avg KS=1 62.0 0.45 20.72 8.67 5.70
18 Joint Order Avg KS=1 Avg KS=1 76.7 0.38 2429 1111 5.31
19 Low HQ Managed Inventory Avg KS=1 66.7 0.39 9.64 5.51 212
20 SS Z=1.65 66.4 0.39 1298 5.63 3.52
21 SS Z=233 69.9 0.39 16.71 6.83 442
22 ES Cof=0.1 57.4 043 13.50 483 3.35
Z=2.33
23 Town Order Avg KS=1 587 0.40 9.64 425 234
24 Joint Order Avg KS=1 Avg KS=1 67.5 0.37 8.79 5.17 1.81
25 30 km Plain High HQ Managed Inventory Avg KS=1 77.8 0.39 2200 9.72 6.00
(town-30P)
26 SS Z=1.65 66.4 0.42 15.16 528 3.79
27 SS Z=233 66.8 0.42 15.15 529  3.77
28 ES Cof=0.1 80.3 0.37 2932 1192 8.08
Z=233
29 Town Order Avg KS=1 66.3 0.43 15.72 6.36  4.25
30 Joint Order Avg KS=1 Avg KS=1 76.0 039 1477 680 3.71
31 Low HQ Managed Inventory Avg KS=1 571 0.42 9.64 4.24 2.52
32 SS Z=1.65 371 0.29 564 219 1.13
33 SS Z=2.33 371 0.29 564 219 1.13
34 ES Cof=0.172=2.33 61.6 042 15.07 5.00 340
35 Town Order Avg KS=1 564 0.43 9.64 4.06 260
36 Joint Order Avg KS=1 Avg KS=1 650 0.35 7.49 411 1.48

@ The unit of Total After HQ Inventory is 10,000 bottles.
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Fig. 8. Delay in submitting Town Order: with different levels of information delay.

traffic, and produces a further increased lead time. Figs. 10 and 11
demonstrate that the HQ receives feedback at a later time under a
higher level of ID.

For the disaster relief supply chain, the ID will cause higher
lead time, which means larger order quantities and higher levels of
inventory. As shown in Figs. 8 and 11, the scenarios with higher ID
leads to larger shipment quantities and more in-transit quantities.
This is confirmed by the simulation results in Table 2. All scenarios
with high ID have larger Total After HQ Inventory than their
comparison objects using the same decision solution in the same
town but with a lower ID.

In summary, the ID makes the Town Order strategy failed in
Supply Rate, and a higher level of ID increases the inventory level.

4.2.2. Impulse of road conditions
As shown in Figs. 3 and 4, a heavy loss in road capacity directly
leads to higher levels of transport time. However, greater transport
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Fig. 9. Delay in submitting orders: by different inventory planning strategies.
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Fig. 10. Delay of feedback of road capacity: with different levels of information
delay.
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Fig. 11. Delay of feedback in-transit inventory, and increases: with different levels of
information delay.

delays will cause higher order quantities and greater shipment
amounts. If the jam on the road increases because of the delays,
then this will cause further delays. In other words, because of the
worsening road conditions, replenishment decisions and transport
delays will reinforce each other. In addition, the high level of ID
will enhance this process of reciprocal reinforcement, and amplify
the instability of the system. Fig. 12 presents how changes in
transport delays occur because of the selection of different

21

Transport Time received by HQ
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Fig. 12. Changes in transport time because of different replenishment decisions.
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Fig. 13. Comparisons of prediction results using different forecasting methods.
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Fig. 14. Forecasting methods: quick response types.

replenishment solutions. All scenarios are in same relief situation
(town-30M with high ID). Fig. 13 shows how the different fore-
casting methods respond to the volatility of transport delays.

4.3. Effects of replenishment solutions
4.3.1. Forecast methods

Four forecasting methods are defined in Table 1. Six methods
were tested with different environments in the simulation by
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Fig. 15. Forecasting methods: trend-smoothing types.
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Fig. 16. Service level produced using quick response forecasting methods.

changing the parameters of ‘SS’ (Z=1.65, 2.33) and ‘ES’ (Cof=0.1,
0.6). Partial results are listed in Table 2.

There are two categories of methods in term of prediction
effects. For example, Fig. 14 shows that three methods can be
classified as quick response methods for town-30M with a high ID.
The curve Dir is identical to Transport Time received by HQ. The
curve ES06 is the result of the ‘exponential smoothing’ method
with parameter Cof=0.6 and Z=2.33, which reflects the rapid
changes in transport delays. The curve ESO1 has a smoother result
because of parameter Cof is set as 0.1. Fig. 15 shows that the other
three methods can smooth the fluctuation of transport delays but
cannot provide prompt response to transport delay trend. Accord-
ing to Table 1, these three methods are all based on T;, which
smoothes the fluctuations of transport delays, and the difference is
the amount of compensation (Avg: KS=1; SS165: Z=1.65; S5233:
Z=2.33), which increases the level of the safety stock.

If the evaluation indicator is set that supply rate has higher
priority than inventory level, the method Avg (mean Supply Rate of
80.5%, mean Total After HQ Inventory of 10.87) has the best system
performance, followed by SS165 (79%, 18.19). Other methods
are ranked as follows: SS233 (79%, 21.35), ESO1 (77.9%, 12.87),
Dir (73.6%, 8.82), and ESO6 (63.6%, 8.57). The performances of Dir
and ES06 are relatively poor because transport delays will become
low in Dir and ESO06 after a period of 30 turns, which leads to very
low inventory and causes oscillations in Supply Rate, as shown in
Fig. 16. The reason why Avg performs better than SS165 is a little
more complicated. At 12 half-days, SS165 promptly responds to
the sudden high latency of transport time but no cargo can be
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Fig. 17. Inventory level produced using trend-smoothing forecasting methods.

shipped because of poor road conditions. After 30 half-days, the
prediction of SS165 maintains a higher value because of its
algorithm of compensation, which obviously leads to excess
inventory (Fig. 17). To summarize, the method Avg creates a better
balance between trend responses and fluctuation smoothing in
this environment.

The Dir and ES06 methods have bad system performance in all
environments. So the relevant results were removed from Table 2.

The performance obtained using the forecasting method is
closely related with the road conditions. With the volatility of
the road capacity of town 30M, the trend-smoothing methods
achieved better results. For example, as discussed above, Avg
works better with a higher level of ID. In addition, SS233 is a
better choice with lower ID. The low fluctuations in transport
delay and the high level of inventory reduce the volatility of the
service level.

For town-10M, because of its long period of road failure, all
prediction methods resulted in almost identical Supply Rate. Thus,
Avg is the appropriate choice because it lead to a lower inventory
level with both high and low ID. Meanwhile, for town-30P, the loss
of road capacity was insignificant, resulting in stable transport
delays. This environment is very similar to a commercial supply
chain. All the trend-smoothing methods failed to respond to the
changes, and ESO1 produced a better service level.

4.3.2. Inventory planning strategies

Three inventory planning strategies were tested in the simula-
tions. They were defined by Eq. (3), Eq. (4), and in Table 1. In
commercial activities, a strategy like Town Order does not require
any information sharing along the supply chain. In disaster relief
operations, the decision-makers in the town must collect the
information of in-transit inventory to estimate the transport delay.
However, only HQ can provide such information. In addition, the
town must share its inventory levels with HQ if the strategy HQ
Managed Inventory is selected. Furthermore, Joint Order requires
the integration of the order quantities from both sides, which
demands a higher degree of collaboration. Thus, information
sharing and collaboration are not optional actions but rather
essential in the disaster relief chain. The three strategies represent
different levels of sharing.

For the simulation results listed in Table 2, the strategy Town
Order offers a poorer performance than HQ Managed Inventory in
every measure because of ID (Section 4.2.1). However, choosing
between HQ Managed Inventory and Joint Order is more difficult.
If the choice is based on service level which is measured by Supply
Rate, Joint Order performs better in half of the scenarios (town-
10M, and town-30P with low ID). When the choice is dependent
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on a balanced indicator such as service level and inventory level,
Joint Order is the better choice in almost all scenarios except for
town-30M with high ID, which endures a dramatically fluctuating
environment.

The joint decision outperforms the individual decisions made
by either side. The level of information sharing in disaster-affected
areas is always insufficient because of the dynamic ID. Thus, both
sides know only part of the actual situation. The Joint Order
strategy will represent a compromise of two sides. The result is
a smooth curve for inventory level and the stabilization of the
service level. Big shortage of materials or a large excess supplies
can be avoided, which are shown in Figs. 18 and 19.

However, such compensation has its limitations. Considering
the simulation results for town-30M with high ID in Table 2, the
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Fig. 18. Inventory levels using different inventory planning strategies in town-10M
with high ID.
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Fig. 19. Inventory levels using different inventory planning strategies in town-30P
with low ID.
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achievements (mean Supply Rate, mean Total After HQ Inventory) of
solutions no. 13 (HQ Managed Inventory, Avg), no. 17 (Town Order,
Avg), and no. 18 (Joint Order) are as follows: 80.5%, 10.87; 62%,
8.67; and 76.7%, 11.11, respectively. These data indicate that the
order made by the town is valueless in the turbulent environment,
so the algorithm of joint will not bring any improvement.

A collaboration in Joint Order is quite different to the practices of
commercial activities. Previous literature shows that demand infor-
mation and inventory level should be shared along the chain (VMI),
or even the forecasting results or planning (Collaborative Planning or
Continuous Replenishment Program), in order to lessen the bullwhip
effect [12-14,28]. It is noted that retailers are excluded from making
orders in commercial supply chains. However, in relief operations,
orders made by towns should be generally included in the final
replenishment decision because of the extreme lack of information,
even though they are disadvantaged by high levels of ID.

4.4. Decision tree

A decision tree can be proposed based on the simulation results
(Fig. 20). The decision regarding the replenishment solution depends
on the relief objective and the features of the environment. Although
the studies in this paper are based on the specific supply of bottled
water, this decision tree can be extended to other types of emergency
supplies. While the balanced goal which makes the selection
of a replenishment solution dependent on the level of ID, is more
appropriate for ordinary supplies such as instant noodles and bottled
water, the goal for life-saving supplies, e.g. medical equipment,
rescue tools, is only the service level and the selection of a replenish-
ment solution is highly dependent on road conditions.

5. Conclusion

A SD model is proposed for a disaster relief chain with dynamic
road conditions and ID. Replenishment solutions were then devel-
oped for three inventory planning strategies and four forecasting
methods. Experiments are simulated for each of these solutions in
different environmental scenarios. A decision tree was proposed
based on the simulation results to help decision makers choose the
appropriate stocking strategies. The research findings include:

(1) Comparing a disaster relief chain with a commercial supply
chain, information sharing and collaboration have direct
impact on inventory and logistics planning due to the dynamic
environment.

(2) Two environmental factors were analyzed in this research:
(a) The ID causes the orders submitted down the disaster

relief chain to show poor levels of performance. High
levels of ID increase the inventory levels as the decision
makers have to place more orders to ensure the stocking
level.

Road Capacity:

Joint Order
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HQ, forecast the lead time
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HQ, forecast the lead time
by trend-smooth methods
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Fig. 20. Decision tree regarding the selection of an appropriate replenishment solution.
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(b) The change of road conditions and shipment schedules
have impact on the on-time transportation rate, while ID
expedites the fluctuations in the delay of transportation
which is not predictable.

(3) The replenishment solution is a two-stage decision to achieve
the balance between the service level and the inventory level.
First, planning inventory based on information sharing. Sec-
ond, adjusting the strategy according to the predicted fluctua-
tions of the lead time.

(4) The strategy of Joint Order obtains a more balanced perfor-
mance in most circumstances. The HQ Managed Inventory
produces a better service level in fluctuating situations. The
smooth-the-trend forecasting method is suitable for inventory
and logistic planning when the post-seismic situations are
volatile, while the quick-response forecasting method has
good performance in stable environments.

As future research directions, we may analyze information from
clickstream in MicroBlog [30] to estimate inventory need and use
questionnaire to collect expert's opinion [31] for logistic planning.
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